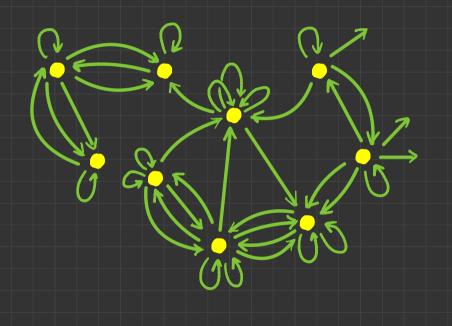
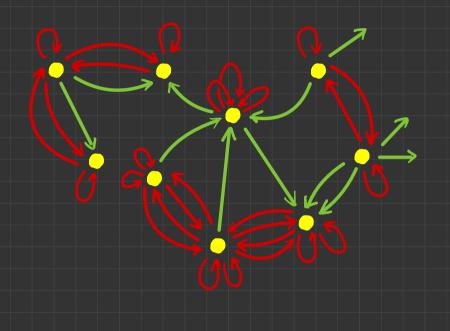
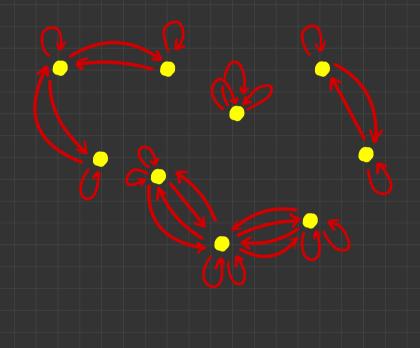
We start with some objects and maps between them...



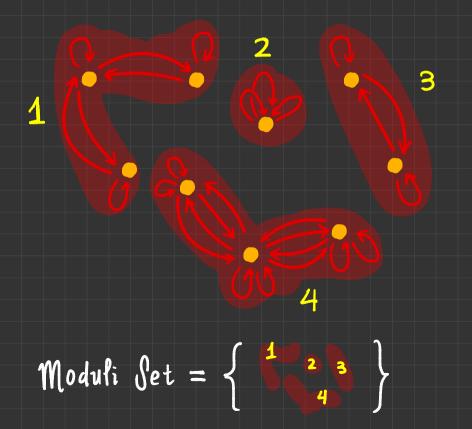
We then define a notion of "sameness" between these objects...



We "forget" all about maps...

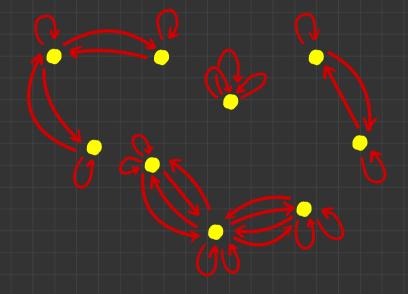


and we also "forget" all the different ways in which things are equivalent...



Moduli Groupoids

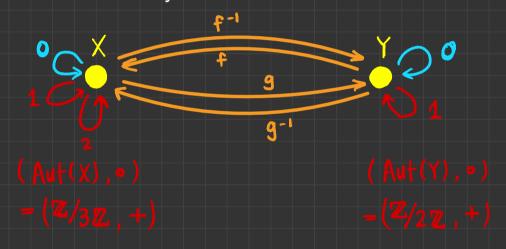
But if we want to track *how* objects are equivalent, then it's better to go back to:



Definition: A groupoid is a category where every morphism is an isomorphism.

Groupoids

Groupoid = A bunch of objects/vertices. At each vertex, the arrows/morphisms form a group. But we allow the possibility move between vertices. All paths between vertices are "two way streets".

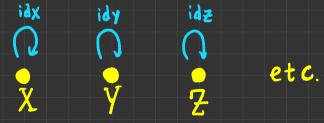


Example: Sets

Start with a set: $X = \{x, y, z, \dots\}$

Make a groupoid with set elements as objects.

and to each set element, attach a trivial-group's-worth of arrows.



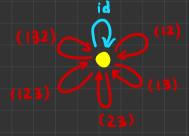
No way of traveling between vertices.

Example: Groups

Start with a group: 6 = 53

Make a groupoid with a single object:

To that object, attach the group G as its arrows.

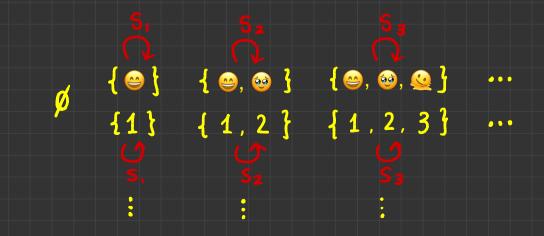


We call this category the classifying groupoid **B**G of G.

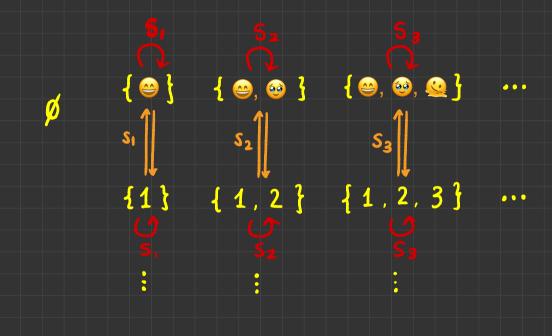
Example: Finite Sets

Start with a finite sets as objects:

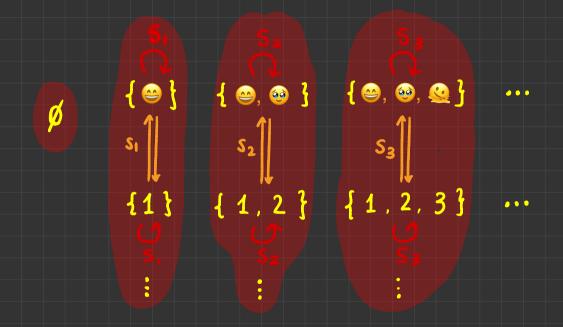
Each set has a symmetric group's number of automorphisms:



Among each pairs of sets of the same size, we also have a symmetric group of arrows.



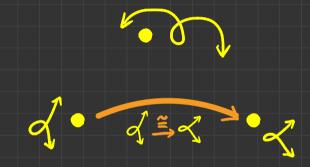
Among each pairs of sets of the same size, we also have a symmetric group of arrows.



Notice we have **N** many isomorphism classes / connected components.

Example: Smooth Curves

Take "smooth connected projective genus g curves over ℂ " as objects.



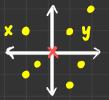
And make the maps between curves isomorphism of curves.

Example: Fundamental Groupoids

Let X be a topological space.

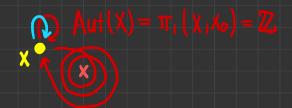
 $e.g. \mathbb{R}^2-0$

Choose the points in X to be your objects.

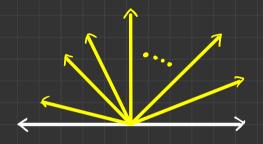


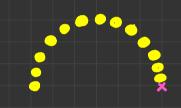
Add one arrow x for each equivalence class of paths from x to y, modulo homotopy.

The automorphisms of each point x forms the fundamental group $\pi_1(X, X_0)$.

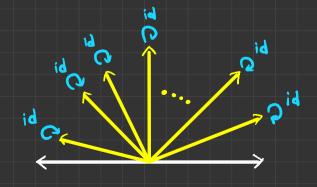


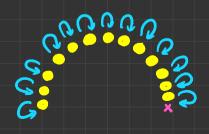
Start with lines in Rⁿ⁺¹ as objects:



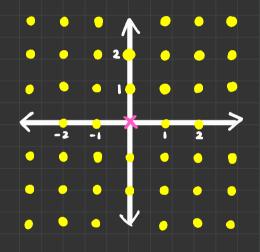


To each line, add a trivial group as arrows.



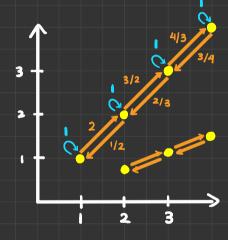


Start with points in the punctured plane $\mathbb{R}^{n+1} - \{\vec{0}\}$ as objects.

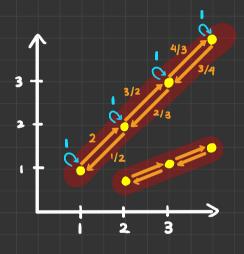


For each pair of points \vec{x} , $\vec{y} \in \mathbb{R}^{n+1} - 0$, add a unique arrow $\vec{x} \xrightarrow{\lambda} \vec{y}$

if $\vec{y} = \lambda \vec{x}$.



The isomorphism classes form the "lines".



Example: Moduli Groupoid of Orbits

Let G be a group acting on a set X. 6 ~ X

Make the elements of X your objects.

$$X = \mathbb{R}^{n+1} - \{\vec{0}\}$$

Add an arrow $x \xrightarrow{g} y$ if $g \in G$ and $y = g \cdot x$.

$$G = (\mathbb{R}^{\times}, \times)$$

$$1 \\ (2,3)$$

$$1 \\ (-6,-9)$$

Notice $\forall x \in X$:

Aut(x) =
$$\begin{cases} stabilizer subgp of x \\ g \in G | g \cdot x = x \end{cases}$$

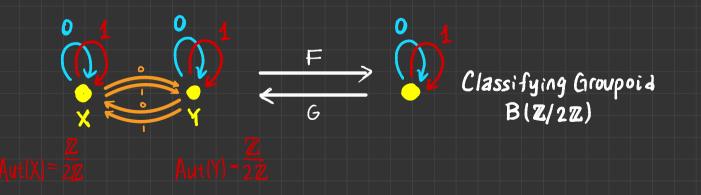
Equivalent Groupoids

Definition: Two groupoids C, D are equivalent if there's a functor C ->D between them such that:

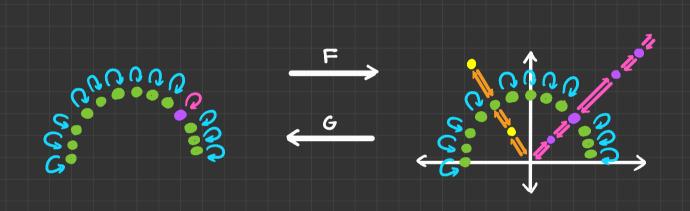
(1) the assignment on objects hits every isomorphism class

(2) for every fixed pair of objects, the assignment on morphisms is bijective.

$$\forall X,Y \in C : \{X \rightarrow Y\} \stackrel{!-!}{\longleftrightarrow} \{FX \rightarrow FY\}$$



Example: Projective Space 1 & 2 are equivalent

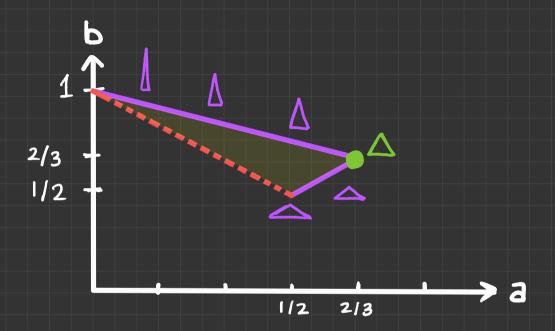


Example: Unlabelled Triangles

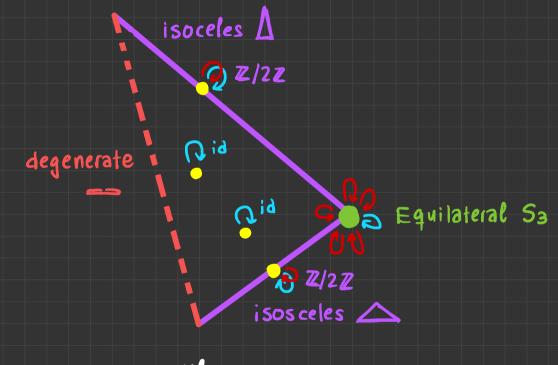
triples of ordered small in equivalence class side lengths to big with perimeter 2

Mune = {
$$(a,b,c) \mid 0 < a \le b \le c < a+b$$
 and $a+b+c=2$ }

and avoiding the degenerate cases



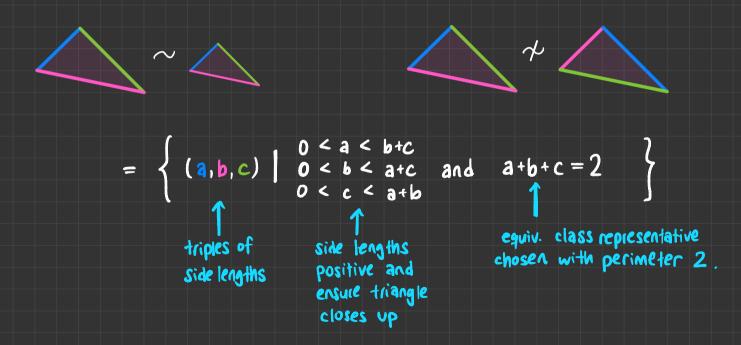
We can artificially "add the iso/symmetries back in".

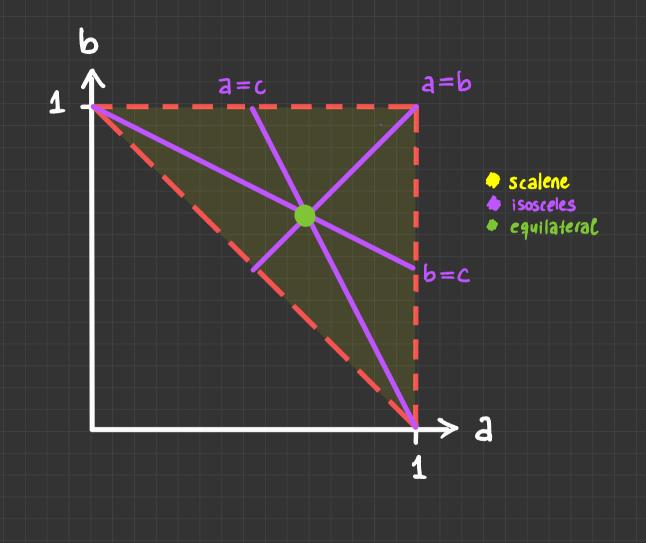


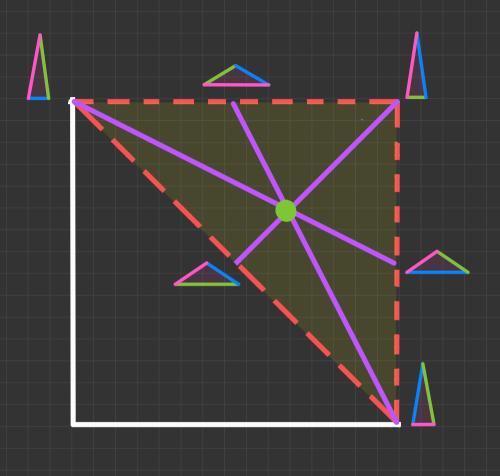
We get a moduli groupoid $\mathcal{M}^{\mathsf{unl}}$.

Example: Labelled Triangles

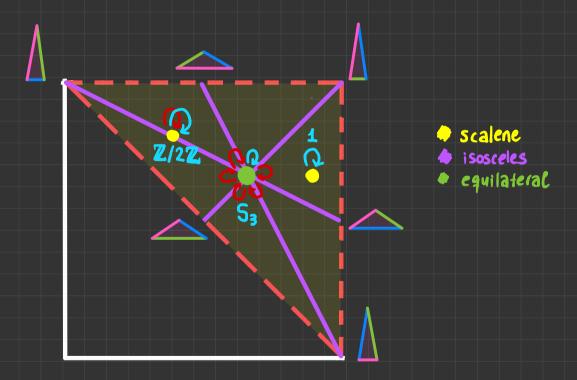
M^{lab} = triangles with colored sides, modulo similarity that matches colors.





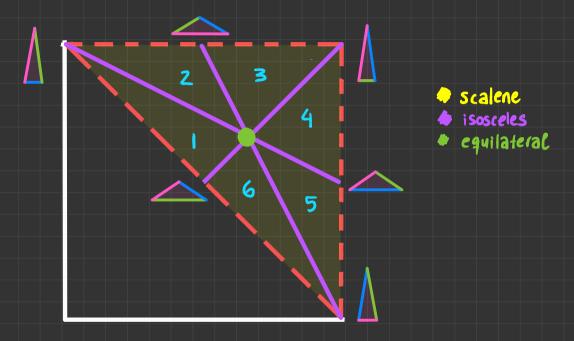


Again we can add isomorphisms to each point, based on the triangles symmetry.



The corresponding moduli groupoid $\mathcal{M}^{\mathsf{lab}}$ has no way of traveling between different vertices.

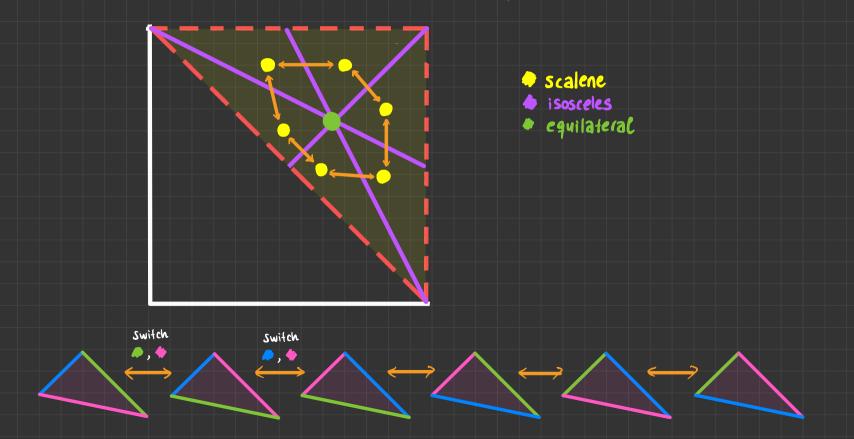
We can construct a moduli groupoid differently.

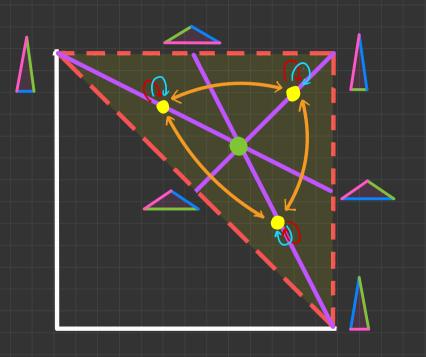


The six portions each contain one triangle for each ratio a:b:c of side lengths.

The only reason why the six triangles with ratio a:b:c are different is because the colors of the sides don't match.

But we can define an Saction on Mab by permuting the colors of the sides.





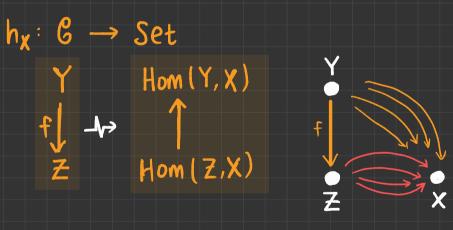
- scaleneisoscelesequilateral

This new moduli groupoid Mab/S3 is equivalent to Mul.



Yoneda Lemma

For a category G with object X & G, the functor hx represented by X is:



Yoneda Lemma

For
$$X \in G$$
 and $G \xrightarrow{F} Set$: $Hom(h_X, F) \xleftarrow{\cong} FX$

The presentations are fully where a single of the presheaf F determined element is sent by

Yoneda Embedding

$$G \hookrightarrow Functors(G \xrightarrow{\circ} Set)$$

$$X \qquad \qquad hx$$

$$f \downarrow \qquad \qquad \downarrow f*$$

$$Y \qquad \qquad hy$$

Lightning Example

We can recover a variety X over ${\Bbb C}$ from its functor of points.

Why is Yoneda useful?

Allows us to naturally embiggen our category and move to a new setting with more arrows.

More arrows = more freedom to get places.

Two roads diverged in the woods...

Moral: but actually, I found a third road after applying the Yoneda embedding...

but actually, it's not really a "road", it's more like a "trail"?

What's the issue?

Once we abandon G and move to Functors $[C^{or} \rightarrow Set]$, we can't "go back" unless we know that the object/functor we are at is in the "image" of the Yoneda embedding.

Definition

A functor $G \xrightarrow{F} Set$ is representable if it's in the "image" of the Yoneda embedding.

i.e.
$$\exists X \in C$$
 and natural isos. $\{FY \xrightarrow{\cong} Hom(Y, X)\}_{Y \in C}$
 $\{FY \xrightarrow{\cong} Hom(X,Y)\}_{Y \in C}$

Example

Example

Top
$$\stackrel{\forall oneda}{\longrightarrow}$$
 Functors ($Top \stackrel{\circ p}{\longrightarrow} Set$)

?

open sets functor Θ
 $Top \longrightarrow Set$
 $(X, \tau) \qquad \tau$
 $f \downarrow \qquad \forall r \qquad \uparrow f^{-1}$
 $(Y, \tau') \qquad \tau'$

$$\exists$$
 ? \in Top and nat. isos: $t \xrightarrow{\cong} [continuous maps $X \rightarrow ?]$$

Example

$$\exists$$
 ? \in Vect_K and nat. isos: $V^* \leftrightarrow [Linear\ Transfs\ V \rightarrow ?]$

Representable by K!

Example The functor $(X, \mathcal{O}_X) \rightarrow \{(f_i, \dots, f_n) \mid f_i \in \Gamma(X, \mathcal{O}_X)\}$ is represented by affine n-space \mathbb{A}^n .

For affine schemes Aff = CRing op ...

The functor $CRing \longrightarrow Set R \rightarrow R^n$ is representable:

$$\begin{bmatrix}
Ring & Homs & ? & \rightarrow R \\
\uparrow & & \\
Z[x_1, \dots, x_n]
\end{bmatrix} \xrightarrow{i-1} R^n$$

Example The functor $(X, Ox) \rightarrow \text{invertible fns. on } X$ is represented by Spec $\mathbb{Z}[x, x^{-1}]$.

For affine schemes Aff = CRing op ...

The functor CRing \longrightarrow Set $R \rightarrow R^{\times}$ is representable:

$$\begin{bmatrix}
Ring Homs ? \rightarrow R
\end{bmatrix} \xrightarrow{i-1} R^{\times}$$

$$\uparrow$$

$$\mathbb{Z}[x_i x^{-i}]$$